Prototype Purpose
--------- -------
asctoq(string, q) ascii string to q type
dtoq(&d, q) DEC double precision to q type
etoq(&d, q) IEEE double precision to q type
e113toq(&d, q) 128-bit long double to q type
e64toq( &e, q ) 80-bit IEEE long double to q type
ltoq(&l, q) long integer to q type
qabs(q) absolute value
qadd(a, b, c) c = b + aqclear(q) q = 0
qcmp(a, b) compare a to b
qdiv(a, b, c) c = b / a
qifrac(x, &l, frac) x to integer part l and q type fraction
qldexp(x, n) multiply x by 2^n
qinfin(x) set x to infinity, leave its sign alone
qmov(a, b) b = a
qmul(a, b, c) c = b * a
qmuli(a, b, c) c = b * a, a has only 16 significant bits
qisneg(q) returns sign of q
qneg(q) q = -q
qnrmlz(q) adjust exponent and mantissa
qsub(a, b, c) c = b - a
qtoasc(a, s, n) q to ASCII string, n digits after decimal
qtod(q, &d) convert q type to DEC double precision
qtoe(q, &d) convert q type to IEEE double precision
qtoe113(q, &d) convert q type to 128-bit long double
qtoe64( q, &e ) q type to 80-bit IEEE long double
EXTENDED PRECISION MATHEMATICAL FUNCTIONS
qexp( x, y ) y = exp( x )
qfloor( x, y ) y = largest integer not greater than x
qlog( x, y ) y = log( x ) [natural logarithm]
qpow( x, y, z ) z = x^y [x raised to the y power]
qrand( q ) q = pseudorandom number in [0,1)
qremain( a, b, c ) c = remainder after dividing b by a.
qround( x, y ) y = nearest integer to x
qsqrt( x, y ) y = sqrt( x )
qsrand( u ) initialize seed of qrand with unsigned int
qtanh( x, y ) y = tanh( x ) [hyperbolic tangent]